Current Surgical Cardiac Procedures

By Pam Bayles, RN, BSN

Note: In-hospital procedures only.
Less invasive techniques

• Endovascular aneurysm repair
• Minimally invasive open heart surgery or
• OPCAB (off-pump coronary artery bypass)
• Robotics
Endovascular Aneurysm Repair (EVAR)

• Evolved to avoid major surgery and related morbidity and mortality associated with standard surgical repair
• Goal is to provide durable repair maintaining prograde flow in graft while excluding flow within the aneurysm
• Eligibility determined by pre-procedure contrast enhanced spiral CT and abdominal aortography
• Complication unique to endovascular repair are endoleaks
 – Presence of flow outside of the lumen of the endograft but within the aneurysm sack
Thoracic Abdominal Aortic Aneurysm
• Potential complication from interrupted blood supply to the spinal cord are life-threatening
 – Result in lower extremity weakness
 – Paralysis 6%-40%

• Lumbar Drain placed to monitor CSF pressure
 – Pressures > 15 considered elevated
 – Increase may be corrected by drainage of CSF

• Keep SBP > 120 and < 160. Keep MAP > 90
 – Use Neosynephrine to prevent hypotension
 – Avoid HTN, which may increase bleeding
 • No NTG or Nipride
• Monitor neurological signs Q1hour
 – Report any neuro change, weakness, tingling, pain, loss of sensation in lower extremities or buttocks, or is bowel incontinence develops
• Minimally invasive heart surgery
 – Performed on beating heart
 – Referred to as MIDCAB (minimally invasive direct coronary artery bypass) or OPCAB (off-pump CABG)
 – Smaller incision
 – Faster recovery time
 – Use of heart-lung machine avoided
 – Decreased procedure costs
 – Reduced morbidity and mortality
• Which Patient?
 – High risk elderly
 – At risk for stroke
 – PVD
 – Renal disease
 – Poor lung function
 – Disease of LAD
• Complications:
 – MIDCAB
 • Restenosis – incidence decreasing with experience
 • Rib fracture
 • Pericarditis
 • Conversion to standard sternotomy
 • SVT arrhythmias and ST segment elevation may develop
 – OPCAB
 • Conversion to cardiopulmonary bypass for completion of anastomosis
 • Additional surgery to control bleeding r/t use of both internal mammary arteries
 • Cerebral complications and atrial fibrillation
Transcathether & Transapical Aortic Valve Replacement

• AVR is the most common valve operation
• Most performed to treat aortic stenosis
 – Affects from 2% - 7% of people > 65 yrs. Of age in the US
 – On-pump AVR has low risk with marked benefits with mortality <1% at larger, experienced centers
 – Less invasive techniques needed for higher risk pts. Such as the elderly with comorbidities
 • Lower complications: no cross-clamping of aorta risking stroke in pts. With severe aortic atherosclerosis or calcification
 • Off pump decreases bleeding, elevation of creatinine and impaired lung function
Transcatheter & transapical AVR

• In clinical trials
• Indications:
 – High risk pts. (> 20% mortality)
 – Severe, symptomatic AS
 – Severe, ascending aortic calcification that prevents aortic cannulation or cross-clamping
 – Severe radiation damage to chest or other severe chest deformities that would preclude sternotomy
• Does not require removal of native valve
• Held in place by stent or frame
• Local or spinal anesthesia with sedation or general anesthesia in cath lab or OR equipped with fluoroscopy and TEE
• Two approaches for transcatheter AVR
 – Antegrade, transeptal
 • Access via femoral vein and pass catheter to right ventricle
 • Puncture septum
 • Technically difficult and can damage mitral valve
- Retrograde approach
 - Femoral artery accessed to reach aortic valve
 - Limitations:
 - Size of artery
 - Atherosclerotic material can be embolized from aorta into distal circulation
- Contrast medium used to verify position of catheter
- Rapid pacing (HR > 150-220/min) needed for Edwards valve to decrease C.O.
- Must be careful not to cover opening of coronary ostia
Transcatheter Valves

Balloon Aortic Valvuloplasty

- 2006 ACC/AHA guidelines recommend solely in adults as a bridge to surgery in pts. With AS who have unstable hemodynamic status and are at high risk but have significant co-morbidities.
• Transapical approach best
 – For pts. With tortuous or small femoral or iliac vessels
 – For pts. With severe PVD
 – For pts. With heavily calcified aorta
 – Quicker
• Access via a 5 to 8cm anterolateral left thoracotomy usually in the 6th ICS
• Pericardium opened and transapical stab incision made in left ventricle
• Balloon valvuloplasty performed to dilate native valve first
• High rate pacing done to decrease C.O.
• Complications
 – Vessel rupture
 – Dissection
 – Pseudoaneurysm
 – Bleeding and thrombus formation
 – Myocardial perforation
 – Cardiac tamponade
 – Embolization of calcified material
 – Perivalvular regurgitation
Surgical Procedures

• Maze Procedure
 – Indicated for pts. Who are intolerant of the arrhythmia, had failure of drug therapy, or had multiple embolic events
 – Incisions/lesions created in both atria and both atrial appendages removed
 • Theory is that A. fib results from multiple macro-reentry circuits
 – 98% successful
Candidates for procedure are:
- Have symptoms but medicines fail to control
- High risk for embolic events
- Atrial fibrillation longer than 6 mos. & have enlarged left atrium
- Already undergoing mitral valve or other cardiac surgery
Atrial appendages

- Blind pouches attached to each atria
- Contribute nothing to overall function
- In A. Fibrillation, because of no synchrony or uniform contraction of atrial muscle blood sits dormant in appendages
- Therefore, clots tend to occur and often progress and become larger
Cox-Maze III procedure

- Series of incision and cryolesions in right and left atria to interrupt multiple re-entrant circuits
- Treatment of LA includes isolation of pulmonary veins and excision of left atrial appendages
- “Gold standard” for surgical procedure of AF
Figure 1.
Valve sparing surgeries

Bentall Procedure

• Surgical procedure for:
 – Aortic dissection
 – Aneurysm of proximal ascending aorta

• Replacement of root and proximal ascending aorta with a tube graft containing a prosthetic valve and reimplantation of coronary arteries into the graft
Ross Procedure

- Patient’s diseased aortic valve is replaced with their own pulmonary valve
- Pulmonary valve replaced with cadaver pulmonary valve
- Anticoagulation not required
• Diseased aortic valve and proximal tissue removed
• Leaves right & left coronary arteries with only a button of tissue
- Pulmonary autograft placed in aortic position
- Buttons on right & left coronary arteries sewn into pulmonary segment
- Cadaver pulmonary valve & artery homograft placed in pulmonary position
CABG with EVH

• Now surgeons make small one-inch long incisions in the patient’s leg to use for grafts
• Results in less tissue damage and less pain
Left Ventricular Assist Device

- Profound failure
 - Mean blood pressure < 60 mmHg,
 Systolic blood pressure < 90 mmHg,
 Cardiac index < 2.0 L/min/m²
- Temporary replacement of
 pumping function of the left
 ventricle
- Blood diverted from LA and LV to
 the LVAD
- Blood returned to the aorta
- Continuous flow vs. pulsatile flow
- Portability